最终代码
好了,这就是在Rust中实现了一个100%安全的双链接列表。它的实现是一场噩梦,泄露了实现细 节,而且不支持几个基本操作。
但是,它存在。
哦,我猜它还充斥着大量"不必要的"Rc
和RefCell
之间正确性的运行时检查。我把"不必要"
加了引号,因为它们对于保证整个实际安全的事情来说是必要的。我们遇到了一些地方,这些检
查实际上是必要的。双重链接的列表有一个可怕的纠缠不清的别名和所有权的故事!
不过,这也是我们可以做的事情。特别是如果我们不关心向消费者暴露内部数据结构的话。
从这里开始,我们将专注于这个硬币的另一面:通过使我们的实现不安全来夺回所有控制权。
#![allow(unused)] fn main() { use std::rc::Rc; use std::cell::{Ref, RefMut, RefCell}; pub struct List<T> { head: Link<T>, tail: Link<T>, } type Link<T> = Option<Rc<RefCell<Node<T>>>>; struct Node<T> { elem: T, next: Link<T>, prev: Link<T>, } impl<T> Node<T> { fn new(elem: T) -> Rc<RefCell<Self>> { Rc::new(RefCell::new(Node { elem: elem, prev: None, next: None, })) } } impl<T> List<T> { pub fn new() -> Self { List { head: None, tail: None } } pub fn push_front(&mut self, elem: T) { let new_head = Node::new(elem); match self.head.take() { Some(old_head) => { old_head.borrow_mut().prev = Some(new_head.clone()); new_head.borrow_mut().next = Some(old_head); self.head = Some(new_head); } None => { self.tail = Some(new_head.clone()); self.head = Some(new_head); } } } pub fn push_back(&mut self, elem: T) { let new_tail = Node::new(elem); match self.tail.take() { Some(old_tail) => { old_tail.borrow_mut().next = Some(new_tail.clone()); new_tail.borrow_mut().prev = Some(old_tail); self.tail = Some(new_tail); } None => { self.head = Some(new_tail.clone()); self.tail = Some(new_tail); } } } pub fn pop_back(&mut self) -> Option<T> { self.tail.take().map(|old_tail| { match old_tail.borrow_mut().prev.take() { Some(new_tail) => { new_tail.borrow_mut().next.take(); self.tail = Some(new_tail); } None => { self.head.take(); } } Rc::try_unwrap(old_tail).ok().unwrap().into_inner().elem }) } pub fn pop_front(&mut self) -> Option<T> { self.head.take().map(|old_head| { match old_head.borrow_mut().next.take() { Some(new_head) => { new_head.borrow_mut().prev.take(); self.head = Some(new_head); } None => { self.tail.take(); } } Rc::try_unwrap(old_head).ok().unwrap().into_inner().elem }) } pub fn peek_front(&self) -> Option<Ref<T>> { self.head.as_ref().map(|node| { Ref::map(node.borrow(), |node| &node.elem) }) } pub fn peek_back(&self) -> Option<Ref<T>> { self.tail.as_ref().map(|node| { Ref::map(node.borrow(), |node| &node.elem) }) } pub fn peek_back_mut(&mut self) -> Option<RefMut<T>> { self.tail.as_ref().map(|node| { RefMut::map(node.borrow_mut(), |node| &mut node.elem) }) } pub fn peek_front_mut(&mut self) -> Option<RefMut<T>> { self.head.as_ref().map(|node| { RefMut::map(node.borrow_mut(), |node| &mut node.elem) }) } pub fn into_iter(self) -> IntoIter<T> { IntoIter(self) } } impl<T> Drop for List<T> { fn drop(&mut self) { while self.pop_front().is_some() {} } } pub struct IntoIter<T>(List<T>); impl<T> Iterator for IntoIter<T> { type Item = T; fn next(&mut self) -> Option<T> { self.0.pop_front() } } impl<T> DoubleEndedIterator for IntoIter<T> { fn next_back(&mut self) -> Option<T> { self.0.pop_back() } } #[cfg(test)] mod test { use super::List; #[test] fn basics() { let mut list = List::new(); // Check empty list behaves right assert_eq!(list.pop_front(), None); // Populate list list.push_front(1); list.push_front(2); list.push_front(3); // Check normal removal assert_eq!(list.pop_front(), Some(3)); assert_eq!(list.pop_front(), Some(2)); // Push some more just to make sure nothing's corrupted list.push_front(4); list.push_front(5); // Check normal removal assert_eq!(list.pop_front(), Some(5)); assert_eq!(list.pop_front(), Some(4)); // Check exhaustion assert_eq!(list.pop_front(), Some(1)); assert_eq!(list.pop_front(), None); // ---- back ----- // Check empty list behaves right assert_eq!(list.pop_back(), None); // Populate list list.push_back(1); list.push_back(2); list.push_back(3); // Check normal removal assert_eq!(list.pop_back(), Some(3)); assert_eq!(list.pop_back(), Some(2)); // Push some more just to make sure nothing's corrupted list.push_back(4); list.push_back(5); // Check normal removal assert_eq!(list.pop_back(), Some(5)); assert_eq!(list.pop_back(), Some(4)); // Check exhaustion assert_eq!(list.pop_back(), Some(1)); assert_eq!(list.pop_back(), None); } #[test] fn peek() { let mut list = List::new(); assert!(list.peek_front().is_none()); assert!(list.peek_back().is_none()); assert!(list.peek_front_mut().is_none()); assert!(list.peek_back_mut().is_none()); list.push_front(1); list.push_front(2); list.push_front(3); assert_eq!(&*list.peek_front().unwrap(), &3); assert_eq!(&mut *list.peek_front_mut().unwrap(), &mut 3); assert_eq!(&*list.peek_back().unwrap(), &1); assert_eq!(&mut *list.peek_back_mut().unwrap(), &mut 1); } #[test] fn into_iter() { let mut list = List::new(); list.push_front(1); list.push_front(2); list.push_front(3); let mut iter = list.into_iter(); assert_eq!(iter.next(), Some(3)); assert_eq!(iter.next_back(), Some(1)); assert_eq!(iter.next(), Some(2)); assert_eq!(iter.next_back(), None); assert_eq!(iter.next(), None); } } }